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High quality z-cut LiNbO3 nonlinear photonic crystals with two-dimensional (2D) dodecagonal and frac-
tal superlattices are successfully fabricated by applying the high voltage pulses. By collinear quasi-phase
matching technique, second-harmonics at five wavelengths and ten wavelengths are observed simultane-
ously in one poled crystal, respectively. The same results can be obtained by rotating around the z axis by
integrals of 30◦ in quasi-periodically poled crystal. In fractal nonlinear photonic crystal, the normalized
conversion efficiency can be as high as 0.53%/mW for 499-nm second-harmonic laser spot.
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The concept of quasi-phase matching (QPM), proposed
by Armstrong in 1962, means that phase velocity mis-
matching in nonlinear interactions can be compensated
by using the exact reciprocal vectors[1]. During the QPM
interactions in nonlinear photonic crystal (NPC), recip-

rocal vectors (RVs)
−→
G can compensate the mismatching

of wave vectors ∆
−→
K =

−→
K2 − 2

−→
K1, in which

−→
K1 and

−→
K2 are the wave vectors of the fundamental and the
second-harmonic beams. QPM technique was not widely
applied in nonlinear frequency conversion until NPC was
successfully fabricated by electric field poling technique.
Previously, the conception of QPM mainly focused on
one-dimensional (1D) structures, such as periodic and
Fibonacci quasi-periodic structures[2,3]. Then, more and
more researchers paid more attentions to QPM harmon-
ics and optical parametric oscillator (OPO). And the
domain structures of NPC were gradually extended to
two-dimensional (2D) plane, and even three-dimensional
(3D) space[4,5]. Many new optical properties in NPC
have been explored, such as the linear polarization-state
generator, the Ĉerenkov second-harmonic generation,
the surface acoustic waves generation, and femtosecond
laser-written waveguides, etc.[6−9]. In this letter, the
nonlinear photonic crystals with 2D dodecagonal and H
fractal superlattices were fabricated. The collinear QPM
second harmonic generations of multiple-wavelengths
were explored in one piece of NPC.

The dodecagonal structures can be formed by using
Stampfli inflation system for the basic square-triangle
tiling unit (side length d)[10]. Firstly, form the par-
ent square-triangle tiling by 6 squares and 12 triangles,
whose side lengths are (2 +

√
3)d. Next, place regular

dodecagons on the big parent square-triangle tiling, with
their centers lying at the vertices of the tiling and their
sides running perpendicular to tiling edges; then erase
the big parent square-triangle tiling. Finally, tile each
dodecagon (sixfold-symmetric) with 6 squares and 12
triangles in one way. Then the initial 12-fold structure is
accomplished as illustrated in Fig. 1(a). The H-shaped
fractal can be formed by thousands of 3-µm-thick lines of

length al. The first level is constructed of a line of length
a1=1024 µm, then two lines (length a2=1024 µm) as the
second level are drawn at right angles and connected to
the end of the first level at their midpoints. The third
and fourth levels are constructed similarly except the line
length is scaled down by a factor of 2 (a3 and a4=512
µm). By continuing this procedure, a self-similar H frac-
tal structure is realized in a two-dimensional plane as
shown in Fig. 1(b).

A He–Ne laser beam was incident normally on the poled
NPC. The diffraction light field of the dodecagonal and
fractal superlattices was recorded by a digital camera, as
shown in Fig. 2. The diffraction pattern actually resem-
bles the Fourier transform of the real space lattice. The
locations of the diffractive spots correspond to the ones
of RVs that can be used for QPM nonlinear interactions,
and the size of the spots indicates the size of the corre-
sponding Fourier coefficients. As shown in Fig. 2(a), it is
seen clearly that the diffraction pattern displays 12-fold
rotational symmetry in reciprocal space, which is greatly
similar to the real space. Moreover, laser beam was inci-
dent normally on the fractal NPC. As shown in Fig. 2(b),
it is obvious that the diffraction pattern is self-similar
(not periodic) with a 1/2 scaling factor, particularly near
the optical center. The intensity distribution is different
in horizontal and vertical directions, which is caused
by anisotropy of the H fractal of finite levels. The H
fractal structure has the following features. Firstly, the
diffraction pattern is consistent under scaling. Secondly,
some diffracted spots become even brighter when moving

Fig. 1. Optical micrographs of the etched 2D poled LiNbO3

NPC at +z surface. (a) Dodecagonal superlattice; (b) fractal
superlattice.
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Fig. 2. Diffraction pattern: (a) 2D dodecagonal superlattice
structure; (b) H-shape fractal superlattice.

Fig. 3. Reciprocal vectors: (a) 12-fold superlattice structure;
(b) H fractal structure.

away from the center. These lead to plenty of recipro-
cal vectors existing in H fractal reciprocal space, which
exactly provide the possibility of multiple wavelength
frequency conversions in a LiNbO3 NPC with H frac-
tal superlattice. For the first feature, a multiple of the
shorter reciprocal vectors can form the combined longer
ones. For the second feature, the longer reciprocal vec-
tors can be gotten directly. As illustrated in Figs. 3(a)
and (b), the reciprocal spaces of dodecagonal and fractal
structures were given.

Considering
−→
k 2 = 2

−→
k 1 +

−→
G in second-harmonic gen-

eration, collinear quasi-phase matching processes of
different wavelengths can be realized simultaneously.
During perfect QPM interactions, phase mismatching

∆
−→
k =

−→
k 2−2

−→
k 1−

−→
G is zero. In this letter, the collinear

QPM second-harmonic interactions are mainly consid-
ered, which means that the fundamental and harmonic
wave vectors and the used reciprocal vectors are collinear.
The collinear QPM second-harmonic interactions were
carried out under a tunable nanosecond OPO pumped
by a Nd:YAG laser, whose repetition rate and pulse width
were 10 Hz and 4 ns, respectively. The laser beams were
perpendicularly incident on the LiNbO3 NPC with 12-
fold superlattice and parallel to the reciprocal vector
(001100). Within the allowable range of the OPO laser
beams, five second-harmonics at 620, 574, 555, 515, and
492 nm were clearly observed, as shown in Fig. 4. Series
of line-shaped patterns at their symmetric positions may
result from non-collinear QPM interactions. With the
fundamental or harmonic wavelengths decreasing, the
reciprocal vectors increase gradually. The RVs at 620,
574, 555, 515, and 492 nm are 0.584, 0.731, 0.81, 1.024,

and 1.188 µm−1 respectively. The RV
−→
G1 for 620 nm

is due to the long diagonal lines of rhombi a, which is
the most common RV, or the sum of the short diagonal
lines of rhombi b and the diagonal lines of squares c,

i.e. (b + c). For example,
−→
G1 corresponds to (001100) or

(010010)+(100001). The RV
−→
G2 for 574 nm is due to the

sum of the long diagonal lines of rhombi a and the short
diagonal lines of rhombi b i.e. (a+ b) or the sum of twice
the short diagonal lines of rhombi 2b and the diagonal

lines of squares c i.e. (2b+c). The RV
−→
G3 for 555 nm may

be due to 2c and a+2b. The RV
−→
G4 for 515 nm is due

to b+2c or a + c. The RV
−→
G5 for 492 nm is due to three

kinds of allowable combination 2a, a + b + c, or 2b+2c.

We calculate that
−→
G1 :

−→
G2 :

−→
G4 :

−→
G5 is 1:1.26:1.73:2,

which agrees well with the ratio above. But for 555 nm,
−→
G1 :

−→
G3 is 1:1.46 for (2c) and 1:1.53 for (a+2b). With

contrast with the ration 1:1.38 above, the difference is
very obvious. At second-harmonic wavelengths of 620,
492, and 555 nm, the conversion efficiencies were 6.69%,
1.38%, and 0.44%, the input powers were 3.6, 4.7, and 5.5
mW, respectively. The normalized conversion efficiency
was the maximum for 620 nm, but the minimum for 555
nm. These may result from the most possible distribu-
tion of the RV for 620 nm harmonic output, which equals
the long diagonal lines of rhombi. And considering the
ratio with larger difference, worse harmonic pattern in
Fig. 4(c) and lower conversion efficiency comprehen-
sively, the 555-nm harmonics may attribute to the phase

Fig. 4. Five collinear QPM second harmonics in LiNbO3 NPC
with 12-fold superlattice. (a) 620, (b) 574, (c) 555, (d) 515,
and (e) 492 nm.

Fig. 5. (Color online) Second-harmonic spots under nanosec-
ond laser beams as the input fundamental waves. Wave-
lengths and colors of harmonic spots are (a) 592 (orange), (b)
577 (yellow), (c) 544 (green), and (d) 517 nm (blue-green),
respectively.
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mismatching in QPM processes by using RVs relating
to 2c and a+2b. The higher normalized conversion

efficiency for 492 nm may be due to the RV
−→
G5 of three

combination modes.
In the fractal reciprocal space, eight kinds of second-

harmonics were realized, which mainly attributed to
plenty of reciprocal vectors. Figure 5 partly shows the
harmonic patterns of 592 (orange), 577 (yellow), 544
(green), and 517 nm (blue-green). It could be con-
cluded that the conversion efficiencies at the short and
long wavelengths were higher than that at the mid-
wavelengths. For example, the fine harmonic pattern
at wavelength 577 nm was obtained, and the conver-
sion efficiency was 1.7% when the input power was 5.3
mW. However, for 499 nm second-harmonic output, the
normalized conversion efficiency was 0.53%/mW, which
might be due to longer RVs based on the diffraction
analysis as explained above. And for 674-nm second-
harmonic output, the normalized conversion efficiency
was 0.42%/mW, which related to the low-order recipro-
cal vectors. In QPM processes, more effective harmonics
can be achieved for lower-order reciprocal vectors. Gen-
erally, the normalized conversion efficiencies were less
than 1%/mW under different wavelengths, which was
due to the higher-order reciprocal vectors. Because the
lower-order reciprocal vectors were too short to satisfy
the QPM second-harmonic processes within the allow-
able range of OPO laser beams.

In conclusion, by quasi-phase matching technique, five
harmonic processes are accomplished simultaneously in
one poled LiNbO3 crystal with 2D dodecagonal quasi-
periodic superlattice. At second-harmonic wavelength
of 620 nm, the normalized conversion efficiency is
1.9%/mW and the corresponding RV can be (001100).
The similar results can be obtained 12 times by rotating
this crystal around the z axis by integrals of 30◦. More-
over, the LiNbO3 nonlinear photonic crystal with H frac-

tal superlattice is successfully prepared. More than ten
harmonic wavelengths, including red, yellow, green, and
blue, are obtained along two mutually perpendicular di-
rections in one crystal. For the input fundamental wave-
length at 998 nm, the normalized conversion efficiency
could reach 0.53%/mW. Both the 12-fold symmetry and
the self-similarity in two kinds of crystals will be helpful
for the development of laser and optoelectronic integrated
technique.
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